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ABSTRACT

Three dimensional D~iWihlt problems for Au u F (u)

F~ 0., are treated numerically by an exceptionally fast,

exceptionally accurate numerical method. Prograwmnirg de-

tanls, numerous examples,, and mahmtcltheory are supplied.

Extension of the method in a natural way to n-dimensional

problems Is Indicated by means of a 4-dimensional. example.



ON THE APPROXIMATE SOLUTION OF A u = F(u)

D. Greenspan and M. Yohe

1. Introduction. Because of its importance in such fields as potential theory,

automorphic functions, and electron radiation [1]-[5], this paper will be concerned

primarily with DMichlet problems in three dimensions. It will be assumed that

the problems need not be reducible to ones in two dimensions so that special

assumptions, like axial symmetry, will be precluded.

Precisely, we will consider:

Problem D. Let G be a three dimensional closed, bounded, simply connected

(contractible) domain in E3 whose interior is R and whose boundary is S

For all real u, let F(u) be defined and differentiable and let

(1.1) F > 0.
Fu-

Then if 4(x, y,z) a C(S), find a function u(x, y, z) which is a solution on R

of

2 2 2
(1.2) - + Vu + --- u F(u)

ax2 8y2 8z2

and which satisfies both

(1.3) u (x, y,z) S

(1.4) ua C(G) .

Sponsored by the Mathematics Research Center, biited States Army, Madison,
Wisconsin under Contract No.: DA-11-022-ORD-2059.
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Under quite general assumptions on S, such as possession of the cone

property [1, p. 233], it is known that Problem D has a unique solution [1, p. 372],

and it is only with such problems that we shall be concerned. But since it is

not known, in general, how to give this solution in closed form, attention will

be directed toward approximating it. A finite difference, digital computer

technique which has proved exceptionally fast and exceptionally accurate will

be described and both mathematical and experimental support for the method

will be pro, .

Extension of the method in a natural way to any number of dimensions will

be indicated by means of a four-dimensional example (a two dimensional example

already having been given elsewhere [6]).
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2. The Numerical Method. Let (x, y, z) be an arbitrary point of G and let

h be a positive constant. The set of points (x + ph, y + qh, ; + rh)

p 0, *l, *Z,0 ... ; q= O, *1, *2,...; r =, O 1, *2, *..., is calleda set

of grid points. Two grid points are said to be adjacent if their distance apart

is h . The set of all lines, each one of which contains at least one pair of

adjacent grid points, is called a lattice. Denote by Gh those points which

are e grid points in G or are points of intersection of S and the lattice.

If (x, y, z) a [S -N Gh], then (x, y, z) is called a boundary lattice point and

the set of all boundary lattice points is denoted by 8 h . The set of all points

of Gh which are not elements of Sh is called the set of interior lattice points

and is denoted by Rh

If Gh consists of n points, we shall number these in a one-to-one

fashion with the positive integers 1, 2,..., n and if (x,y, z) c Gh and has

been numbered t , then u(x, y, z) will be denoted by u.

Method D. At each point (x, y, z) a Sh, u(x, y, z) = (x, y, z) so that the

exact solution is known. At each point (x, y, z) a Rh, let (x+ hl, y, z) ,

(x-h 2 ,y,z), (x,y+h3 , z), (x,y-h 4 , z), (x,y,z+hs), (x,y, z-h 6 ) be those

points of Gh which are nearest to (x, y, z) in the positive and negative x, y

and z directions, respectively (consult Diagram 2. 1). Of course 0 < h <_ h ,

i=1, 2, ... , 6 . If then (x, y, z), (x+ hl, y, z), (x -h 2 , y, z), (x,y+h3, z)

(x, y-h 4 , z), (x, y, z+hý, (x,y, z-h 6 ) are numbered 0-6, respectively,

then write down the difference equation
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h - 1  + hZ 2 h3 (h3 +h4 ) ~3  4h h) 4

(2.1) h3h4 h.5h6 )04h(hi, ul÷ h1hl ) ÷ h4uh 3+h) u,

+ ' 5(he.h U5 + h6(h÷ h6) I U6 ,2

if c consists of m points, application of (2.. ) exactly once at each point of

Rh yields a system of m algebraic equations in, say, Uj, up ,..., um , the

solution of which, say, U1, U2 , .. ., Umr constitutes the numerical solution.

The final step then Is to solve this algebraic system.

(Z YO

3 (z,7+h 39 5)

6 ,/

(.x Y Y~•6
zI

Di a /

I
-- (xi h~e7,,

Diagram 2.1I
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3. Mathematical Basis of Method D.

The derivation of (2.1) is a straight forward generalization of that given for

the two dimensional analogue [6].

In the important case when F! 0, the algebraic system generated in Method D

is linear and, by means of the elementary techniques of [6] - [9], it is easily shown

that the algebraic solution vector exists and is unique, that linear over-relaxation

converges, and that the numerical solution converges to the analytical solution

in a suitable class of functions. The general case, when F need not be identically

zero and the algebraic system need not be linear, can be supported in a fashion

completely analogous to that of Bers [10]. But though existence and uniqueness

of the solution of the algebraic system do follow and convergence of the numerical

to the analytical solution for solutions of class C (G) can be established, one

can rely at all times only on the extended Liebmann method for solving the

nonlinear algebraic system. As yet, no general theoretical basis has been

developed to support nonlinear overrelaxation.
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4. Proarammina Method D In this section we give programming details for

running Method D with F m 0 . Only minor, natural modifications are necessary

to extend the program to the case F0 0 and to n-dimensional problems.

The program will require the following information:

(a) the mesh size h . (h may be different for the x, y, and z

directions if desired; we will assume, however, that the same h

is to be used for all directions).

(b) the base point, (x, y, z), chosen so that, for all points

(x,y,z)4 G, xi<x, y<y, and zz

(c) integers Lx, Ly, and Lz such that the point

(x, , Z4 = (x + (Lx- l) h, y + (Ly- 1) h, z + (Lz - l)h) satisfies the

condition x <_, =y<S, z <_ for all points (x,y,z) a G

(d) the 6 functions Bi, defined for all points of the form

(x + n xh, y + n yh, z + nzh), 0 < n < LX, 0< n y< Ly, O<n z

If a point (xy, z) is in G, then Bi(xy, z) gives the distance

from (x, y, z) to S along the ray passing through point i (see

Diagram 2. 1). If (x, y, z) 4 G, Bi(x, y, z) must be negative for at

least one i

(e) the boundary value function +(x, y, z)

(fW the 7 formulas for the coefficients of u0 , Ul, u2 , u 3 , u4 ,u 5 ,u 6 in

the difference equation (2. 1).

(g) the over-relaxation factor, W

(h) the convergence criterion, I
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The program will analyze this information, calculate the coefficients of the

difference equations and set up an efficient procedure for the iterative solution

of the system of difference equations. The program will then perform the iteration,

and, finally, print the results.

Before discussing the particulars of the program, an example is in order.

For the solution of Example 1, section 5, the following information was supplied:

(a) h = O.1

(b) (x• , z) = (0 0, 0)

(c) L x L y = Lz = _11

(d) B1 = sgn(O ) 48.- x, where Ox = l-(y2 +z 2  sgn() =+1 if x->

- if 0 < 0
x

2B =x
B~ 2

B3 =sgn(ey} JOIy-y, where 9 =l-.x +z-)

B4 = y

B5 = sgn(Oz) [TOzT-z, where 0z = l-(x2 +y)

B6=z

B 6=Z

2 2
(e) 9)(x,y,z)=x +Zy-z

(f) the 7 formulas as given in equation (2. 1)

(g) w = 1. 8

(h) 1 =-9
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Although the method in no way depends on the computer being used to solve

the problem (as long as enough high speed storage is available) or on the

programming language, we will assume for the sake of clarity that the programming

will be done in FORTRAN II for the Control Data Corporation model 1604 computer.

The item of major concern to us is the manner in which arrays are stored in

the computer's memory. If we are given a 3-dimensional array A of dimension

m X n X p, we will give the FORTRAN program a DIMENSION statement as

follows:

DIMENSION A(M, N, P)

where, of course, the actual integers involved must be specified. If we want

to reference a specific element of A, say aijk, we use the following formula:

q=i+ m.(j-l+n.(k-l)) ;

we reference aljk by referring to the storage location A + q . The number q ,

calculated as above, will be called the INDEX of the point aijk in the array A

(we note that q is uniquely determined by the subscripts i, J, and k)

Memory must be allocated for storage of the following data:

(a) two arrays of dimension L X L X L , one of which will be used to store

the solution vector, and the other of which will be used to control the

iteration procedure.

(b) the coordinate vectors V., Vy, and

(c) seven arrays, one for each coefficient of the difference equation (2. 1) .
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Coefficients will be stored in sets; that is, the set consisting of the

Ith element from each of the seven coefficient vectors will comprise

the coefficients of one difference equation. Duplicate sets will be

stored only once, and several distinct equations may well use the same

coefficient set. The number of sets depends on the problem; it is

suggested that the program be given an upper limit and that a check be

made to see that this limit is not exceeded. It is advisable to point

out the number of sets actually computed by the program; this gives a

basis for estimation for future problems as well as providing a check on

the problem being solved.

The program starts with the values x, y, and z, and generates the

coordinate vectors. It then examines each point of the form (x+ n xh, y + n yh, z+ n zh)

to determine whether it is in the region R . (The functions B are used to make
i

this determination). If the point is in R, the coefficients of the corresponding

difference equation are computed, the solution vector entry is initialized, and

the appropriate control information is computed and stored. If the point is not

in the region R, the solution vector entry is set to 1. 0, and the control entry

is made negative.

After this analysis is complete, we have in storage the following information:

(a) The "solution vector" array U . The entries uij k are initialized to

zero if a difference equation is to be solved for the corresponding point;

otherwise uljk g contain 1.0 .
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(b) The control array KON . This array is the heart of the computational

procedure. KONijk is negative if no difference equation is to be

solved for the corresponding point. If a difference equation is to be

solved for the corresponding point, then KON ijk contains two items

of information: the lower half of the memory cell contains an integer

which specifies the index I of the NEXT point at which a difference

equation is to be solved; the upper half of the memory cell contains

the integer J which specifies the coefficient set to be used in solving

the NEXT difference equation. If the point in question is the last point,

the entry is zero. The information for the first point is stored in KON(0)

(c) The coefficient vectors; these vectors contain the coefficient sets to be

used in computing the solution at the various points. This technique

of keeping only the unique coefficient sets, suggested by D. Van Egeren,

effects a considerable saving in high speed storage requirements, and

can be applied whenever two integers can be stored in each element of

the control array.

The iteration is now carried out as follows: KONCO) supplies the index I

of the first part to be considered and the number J of the coefficient set to be

used. We then compute U(I) as follows:

U(I) = UCI) + W,{-vU(I) + [ Cloi} * UI+kl) + CZ(I) * U(I-kl) + C3(J) *U(I+k)

+ C4(j) * U(I-k 2 ) + 05(J) * U(I+k3 ) + 06(J) * U(I-k 3 ) J/COwJ) .

We record the "error" term, which is all of the right hand side of the equation except

the U(I) term.
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When this calculation is completed, we pick up KCJN(I) which gives us the

next values of I and J . When KON(I) is zero, this iteration Is complete,

and we check for convergence and repeat the entire iteration procedure if

necessary.

The entire programming procedure is shown in detail in the attached block

diagram (Diagram 4.1). The diagram should be self-explanatory, but notes are

appended in certain places to aid in tracing the program steps.

In order to abbreviate the diagram, we will use the following conventions:

Symbol "I" will indicate that the procedure is to be carried out in each of

the six directions. That is, the statement "Compute Bi" means compute B1,

B2, B3 B4, B5., and B6 for the given values of x, y, and z
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5. Ea l. To support our contention that Method D is superior, from the

point of view of both speed and accuracy, to any other method, whether discrete

or continuous, typical numerical evidence will now be presented by means of

several examples. Each example was run on the CDC 1604 at the University

of Wisconsin.

Example . Let G be the spherical sector in the first octant bounded by the

2 2 2
surfaces whose equations are x=0, y=0, z a0, x +y + 1 z Let

._2 2
FO, (, yz)=(0$ 0, 0), h =.land *x + 2y- " z contains 410

points. Using overrelaxaton with a zero initial vector, Method D yielded results

correct to at least nine decimal places to the exact solution u = x2 + 2y - z

The running time was 1 minute 50 seconds.

3 3Examvle 2. Example I was modified by setting *= x y-xy -5z. Selected, but

typical, results are recorded under u) in Table 1. The running time was 1 minute
3 3

53 seconds and the exact solution was u =x y-xy - 5z.

Example 3. Example 2 was modified by refining the grid to h = . 05 . Rh contained

3721 points. Selected, but typical, results are recorded under u(2) in Table 1.

The running time was 8 minutes 11 seconds.

Example 4. Let G be the spherical sector In Example I. Let F a eu (see [5 ])

2(x, y, z) =(0, 0, 0), h = .1 and =x+ Z2y+ z . Rh contains 410 points.

Method D was applied with nonlinear overrelaxation [14] and with zero initial

vector. The running time was 2 minutes 33 seconds. Selected, but typical,

results are recorded under u(1) of Table 2.



-14- 
*384

-
I'

-I ! /

4.. ..-- . . ..--

I I
I S I-

f I I

z



#384 -15-

g An extended Liebman method [10] was applied in Example 4 in place

of nonlinear overrelaxation. Newton's method was applied to solve each

equation. The running time was 4 minutes 20 seconds. The results agreed with

those of Example 4 to at least eight decimal places. (With regard to this example,

one should also consult [15].)

Example 6 Let G be the four dimensional spherical sector de£ined by

G-w {(x,yz,w); x_>0, y20, z>_0, _w>0, x +y +z2 + <l} . Let
2_ 2 2- 2FRO, (x,y,zw)=(0, 0, 0, 0), h=.l and *=x -2y +3z -2w . Rh contained

803 points. The difference analogue of the four dimensional Laplace equation,

that is, the extension of (2.1) to four dimensions can be written for this problem

in the form

4 u u
Z _____+_u 21-l _ I1=(5.1) + h h h + -ohi+hi

i=l h21-1h21 h21-1Ih21-1÷h2,) h21(h21-1÷h21) I

Using overrelaxation with initial vector the zero vector, Method D approximated

the exact solution u = x - 2y2 + 3z - 2Wo2 at each point to at least nine decimal

places. The running time was 3 minutes 58 seconds.

Example 7 In this example we will show how Method D can be applied even
when G is not simply connected. Let S be the "outer" cubic surface with

vertices (0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2), (2, 2, 0), (2, 0, 2), (O 2, 2),
3 3 1 31 3111 I311

(2, 2, 2) and let S be the "inner" cubic surface with vertices (L, 1, 1) 3 1 1
3 11 3 3 33 ,hinia

-- 3 -- 3 331 33P3), as shown in Diagram -%.1.
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Let R be the region between S and S2 * Let S =SS 2 and G =R•'S

Also, it is given that +m 1 on SI, #9 0 on S2 , and F a0 . Then, setting

(x, y, z) = (0, 0, 0) and h= . 1, Method D was applied to the resulting Dirichlet

problem. R h contained 784 points. The symmetry of the solution was incorporated

into the program so that only one eighth of G had to be considered. Over-

relaxation was applied with initial vector the zero vector and selected, but typical,

results are recorded under u(1) of Table 3. The running time was 2 minutes

26 seconds.

Example 8. Example 7 was modified by refining the grid to h =.05 . Rh contained

6669 points. Selected, but typical, results are recorded under P-) in Table 3.

The running time was 12 minutes 49 seconds.
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TABLE 1

Approx. Sol.: Approx. Sol.: Exact Sol.:

Sy z(1) u(2) U= 3 y 3

* 1 *1 .1 -0.50000000 -0.50000000 -. 50000000

..1 *7 -3.50000000 -3.50000000 -3. 50000000

* 1 .2 .2 -1.00059993 -1.00060000 -1.00060000

.1 • 3 . 1 -0. 50239984 -0. 50239998 -0. 50240000

.1 .3 .6 -3.00239930 -3.00239992 -3.00240000

* 1 .4 .2 -1.00599922 -1.00599990 -1.00600000

* 1 . 4 . 8 -4.00599842 -4.00599974 -4.00600000

* 1 .6 .2 -1. 02099693 -1.0-099962 -1. 02100000

1 .7 . 1 -0. 53359660 -0. 53359961 -0. 53360000

1 .7 .7 -3.53361012 -3.53360023 -3.53360000

1 .8 .4 -2. 05039221 -2. 05039855 -2. 05040000

.2 .1 .1 -0. 49940004 -0. 49940000 -0. 49940000

.2 * 1 •6 -2.99940018 -2. 99940002 -2.99940000

. 2 . 2 . 1 -0. 50000000 -0. 50000000 -0. 50000000

. 2 . 2 . 6 -3. 00000000 -3. 00000000 -3. 00000000

2 . 3 . 1 -0. 50299980 -0. 50299997 -0. 50300000

.2 .4 .1 -0.50959933 -0.50959992 -0.50960000

.2 .4 .6 -3.00959709 -3.00959968 -3.00960000

.2 .5 .5 -2.52099448 -2.52099937 -2.52100000

.2 .6 .2 -1.03839447 -1.03839930 -1.03840000

.2 .6 .6 -3.03838782 -3.03839868 -3.03840000

.2 .7 .6 -3.06297700 -3.06299759 -3.06300000

.3 . 1 . 1 -0. 49760016 -0.49760002 -0. 49760000

.3 .1 .6 -2.99760070 -2.99760008 -2.99760000

.3 .2 .1 -0.49700020 -0.49700002 -0.49700000

.3 .2 .6 -2.99700092 -2.99700010 -2.99700000

.3 .3 .1 -0. 50000000 -0.50000000 -0.50000000
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TABLE I (Continued)

Approx. Sol.: Approx. Sol.: Exact Sol.:
x (z um1 u2 u3xy. 3 +5z

. 3 . 3 .9 -4. 50000000 -4. 50000000 -4. 50000000

.3 .4 .8 -4.00839981 -4.00839951 -4.00840000

.3 . 5 .6 -3. 02399285 -3. 02399923 -3. 02400000

. 3 . 6 . 4 -2. 048F9917 -2. 04859867 -2. 04860000

.3 .7 .3 -1.58398473 -1.58399789 -1.58400000

.3 .8 .2 -1.13198012 -1.13199693 -1. 13200000

.3 .9 .2 - 1.19437299 -1. 19439290 -1.19440000

.4 . 1 .4 -1.99400130 -1.99400016 -1.99400000
.4 . 1 .8 -3. 99400158 -3. 99400026 -3. 99400000
.4 .2 .8 -3.99040373 -3.99040039 -3.99040000
. 4 .3 . 5 -2.49 160217 -2. 49160024 -2.49160000

.4 .4 .1 -0. 50000000 -0. 50000000 -0. 50000000

.4 .5 .2 -1.01799753 -1.01799967 -1.01800000

.4 .6 .4 -2.04798864 -2.04799869 -2.04800000

.4 .7 .3 -1.59238087 -1.59239767 -1.59240000
.4 .8 .4 -2. 15360595 -2. 15359356 -2. 15360000
.5 . 1 . 7 -3.48800346 -3. 48800042 -3. 48800000

.5 .2 .5 -2.47900552 -2.47900062 -2.47900000

.5 . 3 . 3 - 1.47600437 -1. 47600055 - 1.47600000

.5 .4 .3 -1.48200338 -1.48200042 -1.48200000

.5 .5 .1 -0. 50000000 -0. 50000000 -0. 50000000

.5 .5 .7 -3. 50000000 -3. 50000000 -3. 50000000

.5 .7 .2 -1.08398798 -1. 08399811 -1.08400000
.6 . 1 .2 -0.97900307 -0.97900037 -0.97900000
.6 .1 .6 -2.97900485 -2. 97900064 -2.97900000
.6 .2 .4 -1.96160854 -1.96160104 -1.96160000
.6 .3 .2 -0.95140680 -0.95140090 -0.95140000
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TABLE 1 (Continued)

Approx. Sol.: Approx. Sol.: Exact Sol.:

x y (2)1) u 2 u=x 3y-xy • Sz

.6 .3 .6 -2.95141421 -2.95140156 -2.95140000

.6 .4 .5 -2.45201490 -2.45200137 -2.45200000

.6 .5 .5 -2.46700303 -2.46700050 -2.46700000

.6 .6 .4 -2. 00000000 -2.00000000 -2. 00000000

.7 . 1 .4 -1.96640694 -1.96640094 -1.96640000

.7 .2 .3 -1. 43701210 -1.43700156 -1. 43700000

.7 .3 .2 -0.91601231 -0.91600171 -0.91600000

.7 .4 . 1 -0.40760854 -0.40760 124 -0.40760000

.7 .4 .5 -2.40764318 -2.40760312 -2.40760000

.7 .5 .5 -2.41599728 -2.41599952 -2.41600000

f.7 .7 . 1 -0. 50000000 -0. 50000000 -0. 50000000

.8 .2 . 1 -0. 4040 1347 -0. 40400 140 -0. 40400000

. 8 . 3 . 4 -1. 86803535 -1. 86800377 -1.86800000

.8 .5 . 1 -0. 34404041 -0.34400209 -0. 34400000

.9 .1 .4 -1.92799112 -1.92800167 -1.92800000

.9 . 4 . 1 -0. 26598085 -0. 26599834 -0. 26600000
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x y z, ul x y up)(1

.1 11 .1 .33379803 .4 .1 .3 .77843093

1 .2 .4 .73417575 .4 .2 .1 .88700006

t1 .3 .5 1.04443022 .4 .3 .3 1.28020294

.1 .4 .3 1.08918215 .4 .3 .7 1.61368477

.1 .5 .2 1.23012008 .4 .4 .4 1.58080909

.1 .6 .4 1.57000816 .4 .5 .7 1.95821289

.1 .7 .4 1.75731038 .4 .6 .3 1.89143826

.1 .8 .2 1.81786813 .4 .7 .5 2.12651462

.1 .9 .4 2.06963333 .4 .8 .2 2. 13369786

.2 .1 .5 .72353422 .5 .1 .4 .95402334

.2 .2 .3 .80203491 .5 .2 .3 1.14019526

.2 .2 .9 1.44682719 .5 .3 .2 1.29857485

.2 .3 .9 1.63582348 .5 .4 .4 1.66722297

.2 .4 .8 1.71152454 .5 .5 .7 1.99755020

.2 .5 .8 1.87751902 .5 .7 .2 2.06195601

.2 .7 .1 1.70257965 .6 .1 .3 .97486870

.2 .8 .1 1.88993511 .6 .2 .6 1.45675948

.3 .1 .1 .55309066 .6 .4 .3 1.66927338

.3 .1 .6 .94374260 .6 .5 .6 1.98270586

.3 .2 .7 1. 30608156 .6 .7 .3 2.13505733

.3 .3 .5 1.33513052 .7 .1 .7 1.39334550

.3 .4 .4 1.47053424 .7 .4 .2 1.5957 1747

.3 .5 .2 1.51616497 .7 .5 .3 1.89236582

.3 .6 .3 1.79105773 .8 .1 .2 1.09268284

.3 .6 .4 1.85851258 .8 .2 .5 1.48122715

.3 .7 .4 2.01526321 .8 .4 .3 1.75110486

.3 .9 .1 2.14891247 .9 .1 .3 1.21296598
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TABLE 3

x y zu(2)

1.0 1.0 1.6 .21318413 .21340617

1.0 1.4 1.6 .25474801 .26000151

1.0 1.6 1.3 .23039266 .23203625

1.0 1.8 1.9 .93922824 .94029832

1.0 1.9 1.6 .87962760 .88193903

1. 1 1.5 1.7 . 52860578 . 53955766

1. 1 1.6 1.6 .46730212 .47796716

1.1 1.8 1.5 .70210223 .70815556

1.1 1.9 1.0 .81346190 .81395052

1.2 1.1 1.9 .81812623 .81902279

1.2 1.6 1. 1 .22076057 .22147398

1.2 1.7 1. 1 .4319 1770 .43329 169

1.2 1.8 1. 1 .63036172 .63180745

1.2 1.9 1.7 .91165183 .91351895

1.3 1.5 1.7 .54872314 .56194398

1.3 1.7 1.5 .54872314 .56194398

1.3 1.8 1.2 .64900339 .652 15013

1.4 1.0 1.7 .47342317 .47933409

1.4 1.2 1.8 .67122668 .67620583

1.4 1.6 1.4 .29590727 .30704619

1.4 1.8 1.9 .94863874 .95008233

1.5 1.2 1.6 .31897168 .33873950

1.5 1.6 1.5 .41057277 .45137840

1.5 1.8 1.4 .73764103 .74655664

1.5 1.9 1.6 .90921585 .91255196

1.6 1. 1 1.8 .75512719 .76003480

1.6 1.2 1.9 .88318714 .88577147
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TABLE 3 (Continued)

x y z , (1) ,,(2)

1.6 1.5 1.6 .56670759 .58864922
1. 6 1.7 1.6 .075991236 .76967969
1.6 1.9 1.3 .88834726 .89126535

1.7 1.0 1.0 .42086795 .42134851

1.7 1.2 1.0 .42989416 .43111151

1.7 1.4 1.3 .49616024 .50444129

1.7 1.6 1.5 .70081037 .71379555

1.7 1.8 1.5 .86041861 .86533931

1.8 1. 1 1.3 .64295832 .64555233

1.8 1.2 1.7 .82021476 .82397741

1.8 1.4 1.4 .70371313 .71143949

1.8 1.6 1. 7 . 88560303 . 8897 167 1

1.8 1.9 1.3 .94416441 .94549284

1.9 1.0 1.4 .83606017 . 83822357

1.9 1.3 1. 1 -82513613 .8266 1512

1.9 1.3 1.7 .91578506 o91787661

1.9 1.5 1.7 .93179483 .93410454

1.9 1.7 1.0 .90873890 .91041024

1.9 lo9 1.0 .96974268 .97026699
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